lunes, 18 de octubre de 2010

Metabolismo de la Glucosa

Los animales, como los demás heterótrofos, dependen de la energía química contenida en las moléculas orgánicas sintetizadas por las plantas.
Las células de los heterótrofos no pueden utilizar directamente la energía química de las moléculas orgánicas, necesitan transformarla a energía utilizable en forma de ATP, mediante 2 procesos: Glucólisis y Respiración Celular.
Glucólisis
Ocurre en el citosol de la célula, se lleva a cabo exactamente de la misma manera bajo condiciones aeróbicas (con oxígeno) y anaeróbicas (sin oxígeno). Cada molécula de Glucosa se desdobla en 2 moléculas de ácido pirúvico; durante estas reacciones se forman 2 moléculas de ATP y 2 de NADH (molécula trasportadora de electrones)
Respiración celular
Es un conjunto de reacciones en las cuales el ácido pirúvico producido por la glucólisis se desdobla a bióxido de carbono y agua, produciéndose grandes cantidades de ATP.
Las reacciones finales de la respiración celular necesitan oxígeno porque éste actúa como aceptor final de electrones.
En las células eucarióticas, la respiración celular se realiza en la mitocondria.
La estructura de la mitocondria es parecida a la del cloroplasto; su membrana interna separa un compartimiento interno o matriz (que contiene enzimas solubles) del compartimiento intermembranoso que se encuentra entre las membranas externa e interna.
Metabolismo de la Glucosa
La glucólisis se inicia en el citosol y produce dos ácidos pirúvicos a partir de cada molécula de Glucosa, de tal manera que cada conjunto de reacciones de matriz ocurren dos veces durante el metabolismo de una sola molécula de Glucosa.
En la matriz mitocondrial ocurre la formación de CoA y el Ciclo del Ácido Cítrico o ciclo de Krebs, llamado así en honor de su descubridor Hans Krebs.
Primera etapa: Formación de acetil CoA
El ácido pirúvico se divide en CO2 y un grupo acetil.
El grupo acetil se une a la coenzima–A para formar acetil CoA.
Simultáneamente el NAD+ recibe dos electrones y un ion hidrógeno para formar el NADH.
El acetil CoA entra a la segunda etapa de las reacciones en la matriz.
Recordar Mnemotecnia: SI HIZO ALFA, SUCCIÓNALE, -MALE, OXÍGENO.
trico Isocítrico Alfa-cetoglutárico, Succínico Fumárico-Maléico, Oxalacético
Segunda etapa: Ciclo del Ácido Cítrico o Ciclo de Krebs
El acetil CoA cede su grupo acetil al ácido oxalacético para formar ácido cítrico.
El ácido trico se reordena para formar ácido isocítrico.
El ácido isocítrico cede un carbono para el CO2 formando ácido alfa-cetoglutárico; se forma NADH a partir de NAD+.
El ácido alfa-cetoglutárico pierde un carbono hacia CO2, formando ácido succínico, se forma NADH a partir de NAD+ y energía adicional que está almacenada en forma de ATP. En este punto, se han producido dos moléculas de CO2. (Estas dos moléculas de CO2, junto con la que fue liberada durante la formación de acetil CoA se toman en cuenta para los tres carbonos del ácido pirúvico original.)
El ácido succínico se convierte en ácido fumárico, y el transportador de electrones FAD es cargado para formar FADH2.
El ácido fumárico se convierte en ácido maléico.
El ácido maléico se convierte en ácido oxalacético y se forma NADH a partir de NAD+.
El ciclo del ácido cítrico produce tres moléculas de CO2 y NADH, una de FADH2 y una de ATP por cada acetil CoA.El NADH y el FADH donarán sus electrones al sistema de transporte de electrones de la membrana interna, donde la energía de los electrones se utilizará para sintetizar ATP.
Los electrones de los transportadores de electrones NADH y FADH2 entran al sistema de transporte de electrones de la membrana mitocondrial interna.
Aquí su energía se utiliza para elevar el gradiente de iones hidrógeno. El movimiento de iones hidrógeno hacia su gradiente a través de las enzimas que sintetizan ATP produce la síntesis de 32 a 34 moléculas de ATP.
Al final del sistema de transporte de electrones, se combinan dos electrones con un átomo de oxígeno y dos iones hidrógeno para formar agua.
Resumen.
Metabolismo de la Glucosa
Durante la fotosíntesis, los organismos fotosintéticos producen y almacenan la energía de la luz solar en Glucosa. Durante el desdoblamiento de la glucosa, esa energía se libera y convierte en ATP.
Este proceso lo realizan las células eucarióticas en dos etapas:
La primera es llamada Glucólisis ("romper un azúcar") y NO requiere oxígeno y se lleva a cabo en el citosol o citoplasma exactamente de la misma manera bajo condiciones aeróbicas (con oxígeno) y anaeróbicas (sin oxígeno).
Cada molécula de Glucosa se desdobla en dos moléculas de ácido pirúvico. Durante estas reacciones se forman dos moléculas de ATP y dos moléculas del transportador de electrones NADH.
La segunda etapa es llamada Respiración Celular y se realiza en la mitocondria en presencia de oxígeno.Matriz mitocondrial: En ella ocurre la formación de CoA y se realiza el Ciclo del Ácido Cítrico o ciclo de Krebs y se producen tres moléculas de CO2 y NADH, una de FADH2 y una de ATP por cada acetil CoA.Membrana interna de la mitocondria: El NADH y el FADH2 donarán sus electrones al sistema de transporte de electrones de la membrana interna, donde la energía de los electrones se utilizará para sintetizar de 32 a 34 moléculas de ATP.Al final del sistema de transporte de electrones, se combinan dos electrones con un átomo de oxígeno y dos iones hidrógeno para formar agua.

viernes, 15 de octubre de 2010

FRACCIONAMIENTO CELULAR

Cuando se requieren separar los componentes intracelulares (organelos), la técnica de elección es la centrifugación o la ultracentrifugación en un medio isotónico. Para esto es necesario romper previamente las células mediante procedimientos mecánicos (en un homogeneizador con émbolo de vidrio o teflón), con la consiguiente liberación al medio de sus componentes.
En la centrífuga las partículas de distinta densidad, forma y tamaño, sedimentan a diferentes velocidades y tiempo. De este modo se obtienen distintas porciones o fracciones celulares.
La unidad que define la velocidad de sedimentación de una partícula en un campo gravitacional, se denomina unidad Svedverg, la cual relaciona la velocidad angular del rotor de la centrífuga con la distancia de la partícula al eje del rotor. Esta unidad es una constante para cada partícula y generalmente se describe como una unidad S.
Aunque con esta técnica se obtienen fracciones celulares bastante puras, no es posible evitar la contaminación de una determinada fracción con partes de otra. El comportamiento de las diferentes partes de la célula en el campo centrifugacional está determinado por varios parámetros que pueden coincidir en organelos diferentes; por ejemplo, una mitocondria pequeña puede tener similar forma, talla y densidad que un lisosoma y, por tanto, se obtiene una fracción mitocondrial contaminada por lisosomas. Este hecho es necesario tenerlo en cuenta cuando se está estudiando el contenido enzimático de determinada fracción, ya que se pueden falsear los resultados.

MÉTODOS CITOQUÍMICOS

El objetivo de estos métodos es la localización e identificación de las sustancias químicas constituyentes de las células, para lo cual hay dos líneas de investigación:
· Obtención de fracciones subcelulares y su posterior análisis bioquímico,
· Determinación de diferentes compuestos químicos en el interior de la célula.

Técnica citoquímica
Las células y los tejidos están constituidas por proteínas, carbohidratos y otros componentes, los cuales se encuentran formando parte de las estructura de los mismos.
Estas sustancias son químicamente activas, es decir, que en determinadas condiciones es posible hacerlas reaccionar con otros compuestos.
Esta capacidad de reacción es el principio en que se basan las técnicas citoquímicas e histoquímicas para la demostración, en las células y en los tejidos, de un compuesto o sustancia, o para la determinar la actividad de una enzima, o complejos enzimáticos celulares e hísticos.
El producto de estas reacciones son compuestos coloreados visibles al micros-copio óptico, o de alta densidad para su visualización al microscopio electrónico; por ejemplo, la demostración de lípidos acumulados intracelularmente en algunas patologías, o la demostración de lípidos que forman parte de estructuras celulares, se puede llevar a efecto mediante diversas técnicas con substancias que reaccionan con las grasas; uno de estos es el tetraóxido de osmio, que reacciona con los lípidos no saturados, y da un compuesto de color negro que puede distinguirse tanto al microscopio óptico como al microscopio electrónico debido a su alta densidad.
En otras ocasiones, es posible, mediante esta técnica, demostrar la presencia o ausencia de un orgánulo celular. Las células objeto de estudio se ponen en contacto con sustratos específicos que reaccionarán con los componentes químicos de un orgánulo dado, así dando coloración al M/O.
Estas técnicas brindan una información de la composición química celular, así como de sus elementos estructurales y su localización.

Técnica inmunocitoquímica
Determinadas células de organismos superiores tienen la capacidad de responder ante sustancias extrañas, antígenos, sintetizando otros compuestos llamados anticuerpos.
La técnica inmunocitoquímica se basa en el reconocimiento del antígeno por un anticuerpo que previamente se ha conjugado con un fluorocromo, una enzima o un coloide de un metal pesado (por ejemplo el oro).
Al conjugarse con estos compuestos, los anticuerpos pueden reconocer en el tejido o en la célula, los componentes antigénicos contra los cual fueron desarrollados, poniendo así de manifiesto la localización o presencia de aquellas estructuras objetos del estudio, mediante reacciones químicas o a través de microscopios especializados (microscopios de fluorescencia y electrónico). Si se emplea un microscopio de fluorescencia, el marcador será un fluorocromos, los cuales emiten fluorescencia al ser excitados por la luz ultravioleta; si la reacción antígeno-anticuerpo se evidencia mediante una enzima se hace necesario el empleo del sustrato de la misma, además de una sustancia que proporcione un color determinado o un precipitado que pueda ser distinguido en un microscopio óptico de campo brillante o con una técnica adecuada al microscopio electrónico.

Técnica de congelación fractura

Técnicas de preparación de muestras para observarlas al microscopio
Al observar una estructura al microscopio óptico o al electrónico, la luz o los electrones atraviesan la muestra, dando lugar a la formación de imágenes que son ampliadas por las lentes del microscopio. Para esto es necesario que los objetos examinados sean lo suficientemente delgados, para que la luz o los electrones los atraviesen.
En el caso de la microscopía óptica las muestras deben tener un grosor de 5-8 μm aproximadamente, y para microscopía electrónica, valores entre 20 y 40 nm. Es necesario, por tanto, cortar el material que ha de ser estudiado en "rodajas" muy finas.
La preparación del material biológico muerto, para su estudio al microscopio óptico o al electrónico, consta de cuatro pasos fundamentales: fijación, inclusión, corte y tinción.
Mediante la fijación se logra detener los procesos de destrucción, celular o hística, que se producen por las enzimas contenidas en ellos, una vez muerto el organismo o al separarla de él. Este proceso de destrucción celular recibe el nombre de autolisis.
Por otra parte, la estructura se conservan lo más natural posible, ya que las sustancias fijadoras actúan sobre los componentes celulares deteniendo la autolisis mediante reacciones químicas con reactivos como el formol, el glutaraldehído, el tetraóxido de osmio, etc., o pueden actuar coagulando las proteínas cuando se utiliza el calor.
A continuación se realiza la inclusión del tejido, para que el material tenga la suficiente firmeza al cortarse. El agua que contiene el tejido se sustituye por una sustancia que le da rigidez y evita que se deforme. Esto se logra introduciendo el material a procesar en alcoholes de graduación creciente, lo que irá sustituyendo el agua por el alcohol. Después el alcohol es sustituido por un solvente orgánico como es el xilol, la acetona, etc., para de esta forma terminar incluyendo el tejido en una sustancia que es miscible en este solvente orgánico. Estas sustancias son la parafina, que se utiliza en microscopía óptica, y las resinas sintéticas, que se utilizan en microscopía electrónica.
Una vez incluido el material se realiza el corte utilizando equipos especiales, los cuales presentan una cuchilla que corta "lascas" del material. Para microscopía óptica se utilizan cuchillas de acero y el equipo recibe el nombre de micrótomo. En microscopía electrónica se utilizan los ultramicrótomos, que emplean cuchillas de vidrio o diamante.
Los cortes para su observación al microscopio óptico, se montan en una lámina de vidrio llamada portaobjetos. Para microscopía electrónica se montan en unas rejillas metálicas pequeñas que presentan perforaciones, las cuales permiten el paso del haz electrónico.
Para el estudio de cortes al microscopio óptico de campo brillante es necesario teñir previamente la muestra con diferentes compuestos químicos (colorantes), que tienen la capacidad de reaccionar con los diversos componentes de las estructuras celulares.
La posibilidad de observar una tinción dada en una estructura se debe a que esta se comporta como un filtro de color, dejando pasar solamente la luz de determinada longitud de onda.
Es importante para el estudiante la comprensión de algunos conceptos relacionados con la coloración. Los colorantes que corrientemente se emplean para la observación de láminas histológicas, son sales neutras que presentan radicales ácidos o básicos, es decir, colorantes ácidos y básicos. Una coloración de uso corriente en histología es la hematoxilina y eosina (H/E) que emplea ambos tipos de colorantes. Con esta coloración se observa que el núcleo se tiñe con el colorante básico (azul), y el citoplasma se colorea con el colorante ácido (rosado).
El núcleo, al tener afinidad por el colorante básico (el ADN capta el colorante básico), es basófilo y la propiedad que manifiesta esa estructura se denomina basofilia. Por su parte, el citoplasma, excepto en células secretoras de proteínas, es generalmente acidófilo, es decir, tiene afinidad con el colorante ácido eosina. La propiedad de reaccionar con los colorantes ácidos, es la acidofilia.
Hematoxilina/Eosina. El núcleo se aprecia de color azuloso (basófilo) y el citoplasma se observa rosado (acidófilo). No obstante se observa basofilia localiza-da en el citoplasma que se corresponde con el Retículo endoplásmico rugoso. La basofilia citoplasmática se debe a la presencia de ribosomas asociados al Retículo.
Otro grupo de colorantes, los básicos de anilina, incluyen el azul de toluidina, el azul A, el azul de metileno. Se emplean para identificar los mucopolisacáridos. Al colorearse las estructuras, lo hacen de un color distinto al del colorante original. Esa propiedad se denomina metacromasia. Los colorantes básicos de anilina son el azul brillante, el rojo neutro y el verde Janus.
Las técnicas de tinción incluyen también la utilización de varios colorantes. Ejemplo de ellos son los métodos tricrómicos como el Mallory, el Mallory-Azan y el método de Masson utilizados para demostrar las fibras del tejido conjuntivo, etc. Otra técnica de coloración muy empleada es la tinción con sales de plata, que tiñe de negro o carmelita oscuro las estructuras celulares, estas se denominan por la afinidad con las sales de platas argirófilas.
Por otra parte, el fenómeno fundamental que permite la visualización de las estructuras al microscopio electrónico, esta dado por la dispersión electrónica que provocan los elementos químicos que componen las estructuras de la muestra. Estos elementos tienen por lo general bajo peso atómico (C, O, N, H, etc.), por lo que se hace necesario asociar a estas estructuras, compuestos que contengan metales pesados de mayor peso atómico, por ejemplo el tetraóxido de osmio y las sales de uranio, que reaccionan con zonas específicas de la muestra, provocando una mayor dispersión y, por tanto, un contraste entre las diferentes zonas.
La imagen que se observa en la pantalla fluorescente del microscopio electrónico está formada por los electrones que atraviesan la preparación sin una gran dispersión. Los diferentes tonos están determinados por la llegada o no de ellos, donde las zonas brillantes corresponden, al lugar en el que un mayor número de electrones chocan con la pantalla fluorescente.
Mediante esta técnica es posible estudiar al M/E estructuras celulares superficiales o puestas al descubierto por medio de la fractura de una muestra congelada a muy bajas temperaturas, sin ningún tipo de procesamiento químico que altere la ultraestructura de la misma.
La muestra se congela en nitrógeno líquidos (-196 °C) y se monta en un equipo donde hay un dispositivo especial dentro de una campana, en la cual se hace un alto vacío. Mediante una cuchilla se produce un corte que provoca una línea de fractura en la muestra, quedando expuesta la superficie donde se produjo el corte.
Esta superficie pierde agua por sublimación y posteriormente se le evaporan carbón y metales pesados desde diferentes ángulos, hasta cubrirla en su totalidad, logrando de esta manera, una réplica o mascarilla de la misma. Por un procedimiento donde se elimina el material biológico, la réplica se separa de la muestra y se examina al M/E, en ella se pueden apreciar las características de las estructuras que quedaron impresas en la réplica

Manejo y uso del microscopio (Según AGB) BUAP

1. Colocar el objetivo de menor aumento en posición de empleo y bajar la platina completamente.
2. Si el microscopio se recogió correctamente en el uso anterior, ya debería estar en esas condiciones.
3. Colocar la preparación sobre la platina sujetándola con las pinzas metálicas.
4. Comenzar la observación con el objetivo de 10X (ya está en posición)
Para realizar el enfoque:
5. Acercar al máximo la lente del objetivo a la preparación, empleando el tornillo macrométrico. Esto debe hacerse mirando directamente y no a través del ocular, ya que se corre el riesgo de incrustar el objetivo en la preparación pudiéndose dañar alguno de ellos o ambos.
6. Mirando, ahora sí, a través de los oculares, ir separando lentamente el objetivo de la preparación con el macrométrico y, cuando se observe la muestra algo nítida, girar el micrométrico hasta obtener un enfoque fino.
7. Pasar al siguiente objetivo. La imagen debería estar ya casi enfocada y suele ser suficiente con mover un poco el micrométrico para lograr el enfoque fino. Si al cambiar de objetivo se perdió por completo la imagen, es preferible volver a enfocar con el objetivo anterior y repetir la operación desde el paso 3. El objetivo de 40x enfoca a muy poca distancia de la preparación y por ello es fácil que ocurran dos tipos de percances: pegarlo en la preparación si se descuidan las precauciones anteriores y mancharlo con aceite de inmersión si se observa una preparación que ya se enfocó con el objetivo de inmersión.

Empleo del objetivo de inmersión:
1. Bajar totalmente la platina.
2. Subir totalmente el condensador para ver claramente el círculo de luz que nos indica la zona que se va a visualizar y donde habrá que echar el aceite.
3. Girar el revólver hacia el objetivo de inmersión dejándolo a medio camino entre éste y el de 40X.
4. Colocar una gota mínima de aceite de inmersión sobre el círculo de luz.
5. Terminar de girar suavemente el revólver hasta la posición del objetivo de inmersión.
6. Mirando directamente al objetivo, subir la platina lentamente hasta que la lente toca la gota de aceite. En ese momento se nota como si la gota ascendiera y se adosara a la lente.
7. Enfocar cuidadosamente con el micrométrico. La distancia de trabajo entre el objetivo de inmersión y la preparación es mínima, aun menor que con el de 40x por lo que el riesgo de accidente es muy grande.
8. Una vez se haya puesto aceite de inmersión sobre la preparación, ya no se puede volver a usar el objetivo 40x sobre esa zona, pues se mancharía de aceite. Por tanto, si desea enfocar otro campo, hay que bajar la platina y repetir la operación desde el paso 3.
9. Una vez finalizada la observación de la preparación se baja la platina y se coloca el objetivo de menor aumento girando el revólver. En este momento ya se puede retirar la preparación de la platina. Nunca se debe retirar con el objetivo de inmersión en posición de observación.
10. Limpiar el objetivo de inmersión con cuidado empleando un papel especial para óptica. Comprobar también que el objetivo 40x está perfectamente limpio.

ACTIVIDAD

Haz una investigación documental de las partes del microscopio compuesto, la función que desempeña y ubícalas en el siguiente esquema. 1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.

II. Microscopios Electrónicos:

La luz es un haz de electrones, utilizado en investigación. Los electrones son propagados a través de un tubo, inciden sobre el objeto y son refractados y recogidos en una pantalla. Se utiliza para conocer el tamaño, estructura y morfología de los seres vivos.
Microscopio electrónico de transmisión (muestra muy fina, gran amplificación, no observación de elementos vivos, alto costo).
Microscopio electrónico de barrido (congelación especial de la muestra y recubrimiento con metal, menor poder de resolución, tridimensionalidad).

Tipos de microscopios

I. Microscopios Ópticos

Microscopio Simple: el microscopio más simple es una lente convergente, la lupa (o microscopio estereoscópico). El objeto se coloca entre la lente y el foco, de modo que la imagen es virtual y está a una distancia que es la distancia mínima de visón nítida, alrededor de 25 cm. Consta de una base, en la que se sitúa la platina, y de la que emerge una columna que soporta las lentes y el mando de enfoque. Sólo sirve para exámenes superficiales (disección de animales, observación de colonias, detección de quistes de parásitos,…). Se consigue un número de aumentos entre 4X y 60X.
Microscopio de Campo luminoso u óptico compuesto: imágenes oscuras frente al campo luminoso. Permite el estudio de las estructuras internas de la muestra, para lo cual ésta debe ser dispuesta en una fina capa que puede ser atravesada por la luz.
Microscopio de Campo oscuro: fondo oscuro sobre el que se ven los objetos intensamente iluminados. Permite ver el contorno de las bacterias y su movilidad, y sin teñir como el Treponema pallidum, la bacteria espiroqueta de la sífilis.
Consta de un condensador especial que debe estar muy cercano a la preparación y que lanza sobre la muestra un cono hueco de luz. Con esto se logra que, solamente los rayos que chocan con las estructuras sometidas a estudio y son reflejados hacia arriba, puedan ser visualizados a través del objetivo.
Microscopio de Contraste de fases: produce variaciones de luminosidad de forma que sean visibles las distintas partes de una muestra. Para ver parásitos y bacterias en cortes histológicos, y para objetos transparentes y no coloreados (sedimento urinario).
Microscopio de Fluorescencia: la fluorescencia es la propiedad que tienen ciertas sustancias de emitir, cuando son iluminadas por una radiación de longitud corta, otra radiación de longitud más larga.
La principal aplicación es en inmunofluorescencia, es decir, reacciones de antígenos con anticuerpos. La imagen es invisible al ojo humano, hay que utilizar fotografías, fluorescencias o cualquier otra técnica de foto-emisión.

Antecedentes

A finales del siglo XVI los hermanos Hans y Zacarías Janssen, construyeron el primer microscopio compuesto. Galileo, que es conocido por sus estudios de Astronomía, fue uno de los primeros investigadores que utilizó el microscopio para fines científicos.
El empleo del microscopio originó nuevos términos, tales como el de célula (empleado por Robert Hooke, 1635-1703) y las primeras descripciones y grabados de organismos microscópicos (como los realizados por Leeuwenhoeck, 1632-1723); este último empleó lentes compuestas en la observación de protozoarios y otros organismos unicelulares.
Durante el siglo XVIII el microscopio sufrió diversos adelantos mecánicos que aumentaron su estabilidad y su facilidad de uso aunque no se desarrollaron mejoras ópticas. Las mejoras mas importantes de la óptica surgieron en 1877 cuando Abbe publica su teoría del microscopio y por encargo de Carl Zeiss mejora la microscopía de inmersión sustituyendo el agua por aceite de cedro lo que permite obtener aumentos de 2000X.
A principios de los años 30 se había alcanzado el limite teórico para los microscopios ópticos con aumentos de hasta 500X o 1000X sin embargo existía un deseo científico de observar los detalles de estructuras celulares (núcleo, mitocondria... etc.). A mediados del siglo XX, se inventó un tipo de microscopio que utiliza como fuente de iluminación los electrones. Con este equipo se puede realizar un estudio más detallado de la célula y los elementos subcelulares, moleculares y atómicos consiguiendo aumentos de 100,000 X.
El microscopio electrónico al emplear una fuente de emisión de electrones, de una longitud de onda de 0.005 nm, puede alcanzar valores resolutivos mucho mayores que el alcanzado por los microscopios ópticos. El límite de poder de resolución del microscopio electrónico es de 0.2 nm.
Actualmente se utilizan las siguientes unidades de medidas
· μm - micrómetro (antes, micra)
· nm - nanómetro (antes, milimicra)

MICROSCOPÍA

Para estudiar la estructura de las células, tejidos y órganos que constituyen los componentes del cuerpo humano y organismos pluricelulares, el hombre ha desarrollado diversos métodos y técnicas, y ha ido perfeccionando los instrumentos necesarios para conocer con más profundidad la morfología y función de los diferentes niveles de organización de la materia. Es pues importante conocer, antes de estudiar la estructura y la composición de las células y los tejidos, algunos métodos, técnicas e instrumentos de los que se dispone para llegar a estos conocimientos.
Un microscopio es un instrumento que amplifica una imagen y permite la observación de mayores detalles de los posibles a simple vista. El microscopio más simple es una lente de aumento o un par de anteojos.
El poder de resolución del ojo humano es de 0.2 mm es decir que para ver dos objetos separados estos deben estar como mínimo a esa distancia.
El microscopio aumenta la imagen hasta el nivel de la retina, para captar la información. La resolución depende de la longitud de onda de la fuente luminosa, el espesor de la muestra a observar, la calidad de la fijación y la intensidad de la tinción.
Teóricamente la máxima resolución que se puede alcanzar es de 0.2 µm, dada por una luz con longitud de onda de 540 nm, la cual pasa por un filtro verde (muy sensible por el ojo humano) y con objetos condensadores adecuados. El ocular aumenta la imagen producida por el objetivo, pero no puede aumentar la resolución.

¿CÓMO SE ESTUDIA A LA CÉLULA?

ESTUDIO DE CÉLULAS VIVIENTES

Los métodos in vivo utilizan a organismos o células vivas en su estado natural incluso organelos celulares. Se utilizan colorantes llamados colorantes vitales, ya que no causan daño al organismo o célula durante un tiempo corto, a largo plazo son tóxicos y mortales.
Los métodos in vitro estudian al organismo vivo pero colocado en condiciones artificiales. Se realiza en células aisladas y fáciles de separar. Estas células se colocan sobre un sustrato adecuado que se llama medio de cultivo en el cual se mantienen con vida mientras dura el estudio conocido como cultivo celular.
Cuando el organismo muere es necesario detener sus procesos vitales antes de una autolisis de sus materiales. Este proceso es conocido como fijación. Conserva las células y tejidos en un estado lo mas parecido posible en morfología y composición química al estado vivo.

CULTIVO DE TEJIDOS
El método consiste en cultivar células o tejidos en un medio nutritivo. En estos cultivos se realizan estudios sobre distintos procesos, tales como la división, el crecimiento, la diferenciación celular y otros.
Estas células de cultivo provienen de órganos o tejidos, los cuales, manteniéndolas en un medio nutritivo adecuado, y con temperatura, pH y otros requerimientos especiales, pueden desarrollar muchas de las funciones metabólicas que realizaban cuando formaban parte de los tejidos.
Esta técnica es muy útil para el estudio de los virus, utilizando a las células de cultivo como hospederas de ellos. La técnica en cuestión también se utiliza en el estudio de células cancerosas y su comportamiento en el desarrollo de tumores.
En general, las células de cultivo sirven como material de experimentación sobre el cual se pueden hacer diversos estudios, empleando todas las técnicas descritas.
Son diversos los métodos y técnicas empleados; no obstante, con el desarrollo de las ciencias irán surgiendo nuevas técnicas que permitan a los científicos un conocimiento cada vez más profundo de las células y su funcionamiento.
Es importante tener en cuenta que cada método y técnica tiene sus limitaciones y que solo haciendo un uso racional de ellas, se puede lograr un conocimiento cada vez más completo.

lunes, 11 de octubre de 2010

Cadena de transporte de electrones

Cadena de transporte de electrones
De Wikipedia, la enciclopedia libre
Saltar a navegación, búsqueda
Para otros usos de este término, véase Transporte (desambiguación).

La cadena de transporte de electrones.
La cadena de transporte de electrones es una serie de transportadores de electrones que se encuentran en la membrana plasmática de bacterias, en la membrana interna mitocondrial o en las membranas tilacoidales, que median reacciones bioquímicas que producen adenosin trifosfato (ATP), que es el compuesto energético que utilizan los seres vivos. Sólo dos fuentes de energía son utilizadas por los organismos vivos: reacciones de óxido-reducción (redox) y la luz solar (fotosíntesis). Los organismos que utilizan las reacciones redox para producir ATP se les conoce con el nombre de quimioautótrofos, mientras que los que utilizan la luz solar para tal evento se les conoce por el nombre de fotoautótrofos. Ambos tipos de organismos utilizan sus cadenas de transporte de electrones para convertir la energía en ATP.
Contenido

1 Conceptos generales
2 Antecedentes
3 Cadenas de transporte de electrones en mitocondrias
3.1 Transportadores redox mitocondriales
3.1.1 Complejo I
3.1.2 Complejo II
3.1.3 Complejo III
3.1.4 Complejo IV
3.2 Acoplamiento con la fosforilización oxidativa
3.3 Resumen
4 Cadena transportadora de electrones en bacterias
4.1 Donadores de electrones
4.2 Deshidrogenasas
4.3 Transportadores de quinona
4.4 Bombas de protones
4.5 Citocromos
4.6 Oxidasas y reductasas terminales
4.7 Aceptores de electrones
4.8 Resumen
5 Cadena de transporte de electrones fotosintética
6 Bibliografía básica
7 Referencias
8 Véase también
9 Enlaces externos
//
Conceptos generales
La misión de la cadena transportadora de electrones es la de crear un gradiente electroquímico que se utiliza para la síntesis de ATP. Dicho gradiente electroquímico se consigue mediante el flujo de electrones entre diversas sustancias de esta cadena que favorecen en último caso la translocación de protones que generan el gradiente anteriormente mencionado. De esta forma podemos deducir la existencia de tres procesos totalmente dependientes:
Un flujo de electrones desde sustancias individuales.
Un uso de la energía desprendida de ese flujo de electrones que se utiliza para la translocación de protones en contra de gradiente, por lo que energéticamente estamos hablando de un proceso desfavorable.
Un uso de ese gradiente electroquímico para la formación de ATP mediante un proceso favorable desde un punto de vista energético.
Antecedentes
Las reacciones redox son reacciones químicas en las cuales los electrones son transferidos desde una molécula donadora hacia una molécula aceptora. La fuerza que conduce a esta clase de reacciones es la energía libre de Gibbs de los reactivos y los productos. La energía libre de Gibbs es la energía disponible para realizar un trabajo. Ninguna reacción que incremente la energía libre de Gibbs total de un sistema se realizará de forma espontánea. La transferencia de electrones desde moléculas altamente energéticas (donadoras) hacia moléculas de bajo poder energético (aceptoras) puede ser espaciado en una serie de reacciones redox intermediarias, que en definitiva forman una cadena de transporte. El hecho de que estas reacciones sean termodinámicamente posibles no significa que puedan ocurrir; por ejemplo una mezcla de hidrógeno y oxígeno no entra en ignición de forma espontánea, se requiere suplementar cierta energía de activación o bajar la energía de activación de la reacción. Los sistemas biológicos usan estructuras complejas que reducen la energía de activación de las reacciones bioquímicas. El transporte de electrones se realiza mediante reacciones que son termodinámicamente favorables, y han sido acopladas a reacciones que termodinámicamente no lo son, como por ejemplo son la separación de carga o la creación de un gradiente osmótico. De esta forma la energía libre del sistema baja y hace posible que el proceso se lleve acabo. Las macromoléculas biológicas que catalizan este tipo de reacciones desfavorables, termodinámicamente hablando, se han encontrado en todas las formas de vida conocidas, y sólo realizan estas funciones sí y solo sí están acopladas a reacciones termodinámicas favorables y que ocurran a la vez de las que no lo son. La cadena de transporte de electrones produce energía para la formación de un gradiente electroquímico, es decir se utiliza ese flujo para el transporte de sustancias a través de membrana. Este gradiente se utiliza para realizar, posteriormente un trabajo mecánico, como puede ser la rotación de un flagelo bacteriano o la síntesis de ATP, que es imprescindible para un organismo. El ATP también se puede obtener de otras formas como por ejemplo en la fosforilación a nivel de sustrato. Existen organismos que obtienen el ATP exclusivamente mediante fermentación, pero en la mayoría de los casos la generación de grandes cantidades de ATP se realiza a través de cadenas de transportes de electrones.
Cadenas de transporte de electrones en mitocondrias
Las células de todos los eucariotas contienen orgánulos intracelulares conocidos con el nombre de mitocondrias que producen ATP. Las fuentes de energía como la glucosa son inicialmente metabolizados en el citoplasma y los productos obtenidos son llevados al interior de la mitocondria donde se continua el catabolismo usando rutas metabólicas que incluyen el ciclo de los ácidos tricarboxílicos, la beta oxidación de los ácidos grasos y la oxidación de los aminoácidos. El resultado final de estas rutas es la producción de dos donadores de electrones: NADH y FADH2. Los electrones de estos dos donadores son pasados a través de la cadena de electrones hasta el oxígeno, el cual se reduce para formar agua. Esto es un proceso de múltiples pasos que ocurren en la membrana mitocondrial interna. Las enzimas que catalizan estas reacciones tienen la remarcable capacidad de crear simultáneamente un gradiente de protones a través de la membrana, produciendo un estado altamente energético con el potencial de generar trabajo. Mientras el transporte de electrones ocurre con una alta eficiencia, un pequeño porcentaje de electrones son prematuramente extraídos del oxígeno, resultando en la formación de un radical libre tóxico: el superóxido. En los últimos años se ha descubierto que los complejos de la cadena de transporte de electrones suelen juntarse unas con otras formando estructuras proteínicas mayores que se nombran supercomplejos respiratorios. Estos supercomplejos suelen estar formados únicamente por los complejos I, III y IV en plantas, mientras que en mamíferos se les han encontrado en conjunto con complejo II también. Se ha propuesto que la función de la formación de los supercomplejos respiratorios es la canalización de los electrones a través de los complejos I, III y IV, con la finalidad de agilizar el transporte de electrones, regular la formación de radicales de oxígeno o incrementar la eficiencia de producción de ATP por medio de la exclusión de la alternativa oxidasa o de las NAD(P)H dehidrogenasas del tipo II del transporte de electrones. De esta forma únicamente las proteínas que tienen la capacidad de transportar protones a través de la membrana interna de las mitochondrias y que por lo mismo contribuyen a la formación del gradiente electroquímico para la producción de ATP estarían incluídas en la estructura de los supercomplejos. El parecido entre las mitocondrias intracelulares y las bacterias de vida libre es altísimo. El conocimiento de la estructura, la funcionalidad y las similitudes en el ADN entre mitocondrias y las bacterias prueban fuertemente el origen endosimbióntico de las mitocondrias. Es decir, hay fuertes pruebas que indican que las células eucarióticas primitivas incorporaron bacterias, que debido a las fuerzas selectivas de la evolución se han trasformado en un orgánulo de éstas.
Transportadores redox mitocondriales


Representación minimalista de la cadena de transportadora de electrones (CTE). La energía obtenida a través de la transferencia de electrones (flechas negras) a lo largo de la CTE es usada para bombear protones (flechas rojas) desde la matriz mitocondrial al espacio intermembrana, creando un gradiente electroquímico de protones a través de la membrana mitocondrial interna denominado ΔΨ. Este gradiente electroquímico de protones permite a la ATP sintasa utilizar el flujo de H+ que se genera a través de esta enzima para generar ATP a partir de adenosina difosfato (ADP) y fosfato inorgánico.
Se han identificado cuatro complejos enzimáticos unidos a membrana interna mitocondrial. Tres de ellos son complejos transmembrana, que están embebidos en la membrana interna, mientras que el otro esta asociado a membrana. Los tres complejos transmembrana tienen la capacidad de actuar como bombas de protones. El flujo de electrones global se esquematiza de la siguiente forma:

NADH → Complejo I → Q → Complejo III → Citocromo c → Complejo IV → H2O

Complejo II
Complejo I
El "complejo I" o NADH deshidrogenasa o NADH:ubiquinona oxidoreductasa (EC 1.6.5.3) capta dos electrones del NADH y los transfiere a un transportador liposoluble denominado ubiquinona (Q). El producto reducido, que se conoce con el nombre de ubiquinol (QH2) puede difundir libremente por la membrana. Al mismo tiempo el Complejo I transloca cuatro protones a través de membrana, produciendo un gradiente de protones.
El flujo de electrones ocurre de la siguiente forma:
El NADH es oxidado a NAD+, reduciendo al FMN a FMNH2 en un único paso que implica a dos electrones. El siguiente transportador de electrones es un centro Fe-S que sólo puede aceptar un electrón y trasferirlo a la ubiquinona generando una forma reducida denominada semiquinona. Esta semiquinona vuelve a ser reducido con el otro electrón que quedaba generando el ubiquinol, QH2. Durante este proceso, cuatro protones son translocados a través de la membrana interna mitocondrial, desde la matriz hacia el espacio intermembrana.
Complejo II
El "Complejo II" o Succinato deshidrogenasa; [EC 1.3.5.1] no es un bomba de protones. Además es la única enzima del ciclo de Krebs asociado a membrana. Este complejo dona electrones a la ubiquinona desde el succinato y los transfiere vía FAD a la ubiquinona.
Complejo III
El "complejo III" o Complejo citocromo bc1; EC 1.10.2.2, obtiene dos electrones desde QH2 y se los transfiere a dos moléculas de citocromo c, que es un transportador de electrones hidrosoluble que se encuentra en el espacio intermembrana de la mitocondria. Al mismo tiempo, transloca dos protones a través de la membrana por los dos electrones transportados desde el ubiquinol.
Complejo IV
El complejo IV o Citocromo c oxidasa; EC 1.9.3.1 capta cuatro electrones de las cuatro moléculas de citocromo c y se transfieren al oxígeno (O2), para producir dos moléculas de agua (H2O). Al mismo tiempo se translocan cuatro protones al espacio intermembrana, por los cuatro electrones. Además "desaparecen" de la matriz 4 protones que forman parte del H2O.
Acoplamiento con la fosforilización oxidativa
La hipótesis del acoplamiento quimiosmótico, lo que el valió el premio Nobel de química a Peter D. Mitchell, explica que la cadena de transporte de electrones y la fosforilación oxidativa están acopladas por el gradiente de protones. El flujo de protones crea un gradiente de pH y un gradiente electroquímico. Este gradiente de protones es usado por la ATP sintasa para formar ATP vía la fosforilación oxidativa. La ATP sintasa actúa como un canal de iones que "devuelve" los protones a la matriz mitocondrial. Durante esta vuelta, la energía libre de Gibbs producida durante la generación de las formas oxidadas de los transportadores de electrones es liberada. Esta energía es utilizada por la síntesis de ATP, catalizada por el componente F1 del complejo FOF1 ATP sintasa
El acoplamiento con la fosforilación oxidativa es un paso clave en la producción de ATP. Sin embargo, en ciertas ocasiones desacoplarlo puede tener usos biológicos. En la membrana interna mitocondrial de los tejidos adiposos marrones existe una gran cantidad de termogenina, que es una proteína desacopladora, que actúa como una vía alternativa para el regreso de los protones a la matriz. Esto resulta en consumo de la energía en termogénesis en vez de utilizarse para la producción de ATP. Esto puede ser útil para generar calor cuando sea necesario, por ejemplo en invierno o durante la hibernación de ciertos animales.
También se conocen desacoplantes sintéticos como el caso del 2,4-dinitrofenol, que se ha usado como pesticida, debido a su alta toxicidad.
Resumen
La cadena de transporte de electrones mitocondrial utiliza electrones desde un donador ya sea NADH o FADH 2 y los pasa a un aceptor de electrones final, como el O2, mediante una serie de reacciones redox. Estas reacciones están acopladas a la creación de un gradiente de protones generado por los complejos I, III y IV. Dicho gradiente es utilizado para generar ATP mediante la ATP sintasa.
Las reacciones catalizadas por los complejos I y III están en equilibrio. Las concentraciones de reactivos y productos son aproximadamente los mismos. Esto significa que estas reacciones son reversibles al incrementar la concentración de producto.
Cadena transportadora de electrones en bacterias
En eucariotas, el NADH es el donador de electrones más importante. En procariotas, es decir bacterias y arqueas la situación es algo más complicada, debido a que hay un gran número de donante de electrones y un gran número de aceptores. Si generalizamos el transporte en bacterias este podría quedar de la siguiente forma:

Donador Donador Donador

↓ ↓
Aceptor Aceptor

Puede que los electrones pueden entrar a la cadena en tres niveles: un nivel en donde participa una deshidrogenasa, otro en la que actúa un reservorio de quinonas, o en un nivel en el que actúa un transportador móvil como es el citocromo. Estos niveles corresponden a sucesivos potenciales redox más positivos o sucesivas bajadas de las diferencias en el potencial relativo en los aceptores de electrones. En otras palabras, corresponden a cambios cada vez menores en la energía libre de Gibbs.
Las bacterias pueden usar múltiples cadenas de transporte de electrones, e incluso simultáneamente. Las bacterias pueden usar varios donadores diferentes de electrones. Por ejemplo, Escherichia coli, cuando crece en condiciones aeróbicas usando glucosa como fuente de energía, usa dos NADH deshidrogenasas diferentes y dos quinol oxidasas diferentes, un total de cuatro cadenas de transporte que funcionan simultáneamente.
Las bacterias también generan un gradiente de protones, para ello utilizan al menos tres bombas de protones, al igual que las mitocondrias, aunque se han descrito casos en los que solo existen dos o incluso una. Evidentemente siempre tiene que existir al menos una bomba de protones para poder generar el gradiente electroquímico, que es esencial para la generación de ATP.
Donadores de electrones
En la biosfera actual, los donadores de electrones más comunes son las moléculas orgánicas. Los organismos que usan moléculas orgánicas como fuente de energía son conocidos como organotrofos. Sin embargo, existen procariotas que son capaces de utilizar fuentes inorgánicas como fuente de energía y se les conoce por ello con el nombre de litotrofos. Estos donadores inorgánicos incluyen al hidrógeno, al monóxido de carbono, el amonio, el nitrito, sulfuro, y el ion ferroso. Los litotrofos se han observado creciendo en formaciones de rocas a centenares de metros bajo la superficie de la Tierra. El uso de donadores de electrones inorgánicos como fuente de energía es de particular interés en el estudio de la evolución. Este tipo de metabolismo tuvo que ser el predecesor de los actuales modelos de organotrofos.
Deshidrogenasas
Las bacterias pueden usar un gran número de donadores de electrones. Cuando utilizan materia orgánica como fuente de energía, el donador puede ser el NADH o el succinato, en tal caso los electrones entran a la cadena de transporte mediante la NADH deshidrogenasa, que es similar al complejo I mitocondrial, o bien mediante la succinato deshidrogena, que es similar al complejo II. Otras deshidrogenasas pueden ser utilizadas dependiendo del donador; ejemplos pueden ser la formato deshidrogenasa, la lactato deshidrogenasa, la gliceraldehído-3-fosfato deshidrogenasa, H2 deshidrogenasa, también conocida por el nombre de hidrogenasa, y etc. Algunas de estas deshidrogenasas también actúan como bombas de protones, otras simplemente donan los electrones al reservorio de quinonas. La mayoría de las deshidrogenasas son sintetizadas solo en caso de necesidad, por lo que dependiendo del ambiente en el que se encuentra podremos detectar una o varias de estas deshidrogenasas. Las bacterias son capaces por tanto de realizar una regulación transcripcional de las mismas.
Transportadores de quinona
Las quinonas son transportadores móviles liposolubles. En general desempeñan las mismas funciones que la quinona mitocondrial, aunque las bacterias presenten quinonas específicas como son por ejemplo la ubiquinona o la menaquinona.
Bombas de protones
Se considera una bomba de protones cualquier proceso que genere un gradiente de protones a través de la membrana. Los protones pueden ser movidos físicamente a través de la membrana como es el caso de los complejos I y IV de las mitocondrias. El mismo efecto es observado cuando los electrones se mueven en la dirección opuesta, El resultado es la desaparición de protones de la matriz y la aparición de protones en el espacio intermembrana. Este es el caso del complejo III de las mitocondrias, en el cual se observa el ciclo Q. Algunas deshidrogenasas son bombas de protones, otras no. La mayoría de oxidadas y reductasas si lo son, aunque existen excepciones. El citocromo bc1 es una bomba de protones encontrada en muchas bacterias, aunque no en todas, por ejemplo Escherichia coli.
Citocromos
Los citocromos son proteínas que contienen porfirinas que tienen ligado un átomo de hierro. Existen citocromos que son hidrosolubles, otros que son liposolubles. Otra peculiaridad es que existen citocromos móviles como por ejemplo el citocromo c. Aunque la gran mayoría funcionan asociadas a macromoléculas como pueden ser los complejos III y IV.
Oxidasas y reductasas terminales
Cuando una bacteria crece en ambientes aeróbicos, el aceptor final de los electrones es reducido hasta agua por un enzima que se denomina oxidasa. Cuando una bacteria crece en ambientes de hipoxia, el aceptor de electrones es reducido por una enzima que se denomina reductasa. En las mitocondrias el complejo terminal es la citocromo oxidasa, pero las bacterias aeróbicas pueden utilizar varias oxidasas. Escherichia coli, no presenta citocromo oxidasa, por lo que en condiciones aeróbicas utiliza dos quinol oxidasa diferentes para reducir el oxígeno a agua. Ambas quinol oxidasas actúan a su vez como bombas de protones. Las bacterias anaeróbicas no pueden utilizar el oxígeno como aceptor final de los electrones, por lo que requieren reductasas especializadas para cada una de los aceptores. Escherichia coli puede usar, por ejemplo, una fumarato reductasa, la nitrato reductasa, la nitrito reductasa o la DMSO reductasa dependiendo de si existen esos aceptores en el medio en el que estás creciendo.
Aceptores de electrones
Al igual que existen un gran número de donadores de electrones, también existen un gran número de aceptores que pueden ser de ambos tipos, es decir de origen orgánico o inorgánico. Si el oxígeno está disponible, se usará como aceptor, ya que genera mayor producción energética. En los ambientes anaeróbicos, se puede utilizar NO3-, NO2-, Fe3+, SO42-, CO2 y pequeñas moléculas orgánicas como por ejemplo el fumarato.
Resumen
Las cadenas de transporte de electrones bacterianas, son en general, inducibles. Dependiendo del medio en el que estén creciendo las bacterias sintetizarán distintos complejos transmembranas que producirán diferentes transportes en sus membranas.
Cadena de transporte de electrones fotosintética
En la fosforilación oxidativa, los electrones son transferidos desde un donador de electrones de alta energía a un aceptor a través de una cadena de transporte de electrones. En la fotofosforilación, la energía de la luz solar es usada para crear un donador de electrones altamente energético y un aceptor de esos electrones. Los electrones son transferidos desde el donador hasta el aceptor por una cadena de transporte totalmente diferente a la observada en las mitocondrias. La cadena de transporte de electrones fotosintética tiene varias similitudes con la cadena oxidativa. Tienen transportadores móviles, transportadores liposolubles y móviles, transportadores hidrosolubles y bombas de protones, que se encargan de generar el gradiente electroquímico.
Bibliografía básica
Fenchel T; King GM, Blackburn TH (Sep de 2006). Bacterial Biogeochemistry: The Ecophysiology of Mineral Cycling (2nd ed. edición). Elsevier. ISBN 978-0121034559.
Lengeler JW; Drews G; Schlegel HG (editors) (Jan de 1999). Biology of the Prokaryotes. Blackwell Science. ISBN 978-0632053575.
Nelson DL; Cox MM (Apr de 2005). Lehninger Principles of Biochemistry (4th ed edición). W. H. Freeman. ISBN 978-0716743392.
Nicholls DG; Ferguson SJ (Jul de 2002). Bioenergetics 3. Academic Press. ISBN 978-0125181211.
Stumm W; Morgan JJ (1996). Aquatic Chemistry (3rd ed edición). Wiley. ISBN 978-0471511854.
Thauer RK; Jungermann K; Decker K (Mar 1977). «Energy conservation in chemotrophic anaerobic bacteria». Bacteriol Rev 41 (1): pp. 100-80. PMID 860983.
White D. (Sep de 1999). The Physiology and Biochemistry of Prokaryotes (2nd ed. edición). Oxford University Press. ISBN 978-0195125795.
Voet D; Voet JG (Mar de 2004). Biochemistry (3rd ed edición). Wiley. ISBN 978-0471586517.
Guanosín trifosfato
De Wikipedia, la enciclopedia libre
Saltar a navegación, búsqueda

Guanosín trifosfato
Nombre (IUPAC) sistemático
[(2R,3S,4R,5R)-5-(2-amino-6-oxo-3H-purin-9-il)-3,4-dihidroxioxolan-2-il]metil (hidroxi-fosfonooxifosforil) hidrógeno fosfato
General
Otros nombres
GTP; Trifosfato de guanosina; Guanosina-5'-trifosfato; Guanosina 5'-(tetrahidrógeno trifosfato); 9-β-D-ribofuranosilguanina-5'-triphosfato; 9-β-D-ribofuranosil-2-amino-6-oxo-purina-5'-triphosfato
Fórmula molecular
C10H16N5O14P3
Identificadores
Número CAS
86-01-1
PubChem
6830
Propiedades físicas
Masa molar
523.18 g/mol
Propiedades químicas
Valores en el SI y en condiciones normales(0 °C y 1 atm), salvo que se indique lo contrario.Exenciones y referencias

El guanosín trifosfato (GTP, del inglés «guanosine triphosphate»), también conocido como guanosina-5'-trifosfato, es uno de los nucleótidos trifosfato usados en el metabolismo celular junto al ATP, CTP, TTP y UTP.
Bioquímicamente, el GTP es 9-β-D-ribofuranosilguanina-5'-trifosfato, o también 9-β-D-ribofuranosil-2-amino-6-oxo-purina-5'-trifosfato.
El GTP es un nucleótido cuya base nitrogenada es la purina guanina. Su función es similar a la del ATP, dado que también es utilizado como moneda energética. Además el GTP es el precursor de la base guanina en la síntesis de ADN (replicación) y en la de ARN (transcripción).
Por otro lado el GTP es esencial en ciertas vías de señalización, en las que actúa como activador de sustratos en reacciones metabólicas, al igual que hace el ATP pero de una forma más específica. En estas reacciones, como por ejemplo cuando se asocia a proteínas G, el GTP actúa como segundo mensajero, activando a la proteína G al unirse a ésta. Cuando la célula requiere cambiar el estado de activación de esa proteína, entra en acción una proteína GTPasa, que convierte el GTP del complejo GTP-proteína G, a GDP, liberando un sustrato GDP-proteína G inactivo.
Contenido
[ocultar]
1 Actividades metabólicas
1.1 Transferencia de energía
1.2 Traducción genética
1.3 Inestabilidad dinámica de los microtúbulos
1.4 cGTP
2 Referencias
3 Véase también
//
[editar] Actividades metabólicas
[editar] Transferencia de energía
El GTP está implicado en la transferencia de energía en el interior de la célula. Por ejemplo, una molécula de GTP es generada en cada recorrido del ciclo de Krebs. Su energía es equivalente a la de generar una molécula de ATP, de hecho, es rápidamente convertida a éste.[1]
[editar] Traducción genética
Durante la fase de elongación de la traducción, el GTP se utiliza como fuente de energía para la unión de un nuevo complejo aminoácido-ARNt al sitio A del ribosoma. Del mismo modo, el GTP es usado como fuente de energía para la translocación del ribosoma hacia el extremo 3' del ARNm.[2]
[editar] Inestabilidad dinámica de los microtúbulos
Durante la polimerización de los microtúbulos, cada heterodímero formado por una subunidad α y una β, porta dos moléculas de GTP. El GTP es hidrolizado posteriormente a GDP cuando el heterodímero es incorporado al extremo + del filamento en crecimiento. Parece que la hidrólisis del GTP no es obligatoria para la formación del microtúbulo, pero sin embargo, sólo las moléculas de GDP-tubulina son capaces de despolimerizar. Así, un extremo GTP-tubulina en el microtúbulo estabiliza éste evitando su despolimerización. Una vez el GTP de este extremo es hidrolizado, el microtúbulo se despolimeriza rápidamente.[3]
[editar] cGTP
El guanosín trifosfato cíclico (cGTP) ayuda al adenosín monofosfato cíclico (cAMP) a activar los canales iónicos regulados por nucléotidos cíclicos en el sistema olfativo.[4]
[editar] Referencias
Berg, JM; JL Tymoczko, L Stryer (2002). Biochemistry (5th edición). WH Freeman and Company. pp. 476. ISBN 0-7167-4684-0.
Solomon, EP; LR Berg, DW Martin (2005). Biology (7th edición). pp. 244–245.
Microtubule structure© text copyright 1996 Gwen V. Childs, Ph.D.
Medical Physiology, Boron & Boulpaep, ISBN 1-4160-2328-3, Elsevier Saunders 2005. Updated edition. Page 90.

sábado, 9 de octubre de 2010

Respiración aerobia

La respiración aerobia es un conjunto de reacciones en las cuales el ácido pirúvico producido por glucólisis se desdobla a bióxido de carbono y agua, y se producen grandes cantidades de ATP. Utiliza la glucosa como combustible y el oxígeno como aceptor final de electrones. Se distinguen cuatro etapas en la respiración aerobia:
1. Glucólisis.
2. Formación de acetil coenzima A.
3. Ciclo de Krebs o ciclo del ácido cítrico.
4. Cadena respiratoria.
Glucólisis
Comienza en el citosol de la célula. Es una secuencia compleja de reacciones, mediante las cuales una molécula de glucosa se desdobla en dos moléculas de ácido pirúvico, lo que produce una ganancia de energía de dos moléculas de ATP y dos moléculas del trasportador de electrones NADH. Este proceso consta de dos etapas: la primera es la activación de la glucosa (azúcar con seis átomos de carbono), en la que ocurren dos reacciones de catalización enzimática y cada una de ellas utiliza ATP y se convierte de una molécula relativamente estable de glucosa en una muy reactiva de bifosfato de fructuosa y se separa en dos moléculas de tres carbonos de fosfogliceraldehído que pasan por una serie de reacciones antes de producir dos moléculas de ácido pirúvico. Dos de estas reacciones se asocian a la síntesis de ATP, es decir, generan 2 moléculas de ATP por cada fosfogliceraldehído.La segunda es la producción de energía y un ion hidrógeno se agrega al transportador de electrones vacío NAD+ para formar NADH. Se producen dos moléculas de fosfogliceraldehído por cada molécula de glucosa, de tal manera que se forman dos transportadores NADH.Glucosa + 2NAD+ + 2ADP + 2Pi ▬► 2 Ácido pirúvico + 2NADH + 2H+ + 2ATPFormación de acetil coenzima ACada molécula de ácido pirúvico entra a la matriz intermembranal de una mitocondria y se oxida en una molécula de dos carbonos, el grupo acetil se une a la coenzima A para formar acetil coenzima A. Simultáneamente, el NAD+ recibe dos electrones y un ion hidrógeno para obtener NADH y se produce CO2 como producto de desecho.

Si hizo alfa,succiónale fú-male-oxígeno.

Chiquillos y chiquillas, recuerden la Mnemotecnia para el Ciclo de Krebs.
(Del gr. μνήμη, memoria, y -tecnia. f. Procedimiento de asociación mental para facilitar el recuerdo de algo).

Si hizo alfa, succiónale fú-male oxígeno.

Si Cítrico
hizo Isocítrico
alfa, Alfa cetoglutárico
succiónale, Succínico
fú - Fumárico
-male, Maléico
oxígeno. Oxalacético


(Todos son ácidos).
Suerte.

Respiración aerobia y anaerobia

Los animales, como los demás heterótrofos, dependen de la energía química contenida en las moléculas orgánicas sintetizadas por las plantas.Las células de los heterótrofos no pueden utilizar directamente la energía química de las moléculas orgánicas, necesitan transformarla a energía utilizable en forma de ATP, mediante 2 procesos: Glucólisis y Respiración Celular.
Glucólisis
Ocurre en el citosol de la célula, se lleva a cabo exactamente de la misma manera bajo condiciones aeróbicas (con oxígeno) y anaeróbicas (sin oxígeno). Cada molécula de Glucosa se desdobla en 2 moléculas de ácido pirúvico; durante estas reacciones se forman 2 moléculas de ATP y 2 de NADH (molécula trasportadora de electrones)
Respiración celular
Es un conjunto de reacciones en las cuales el ácido pirúvico producido por la glucólisis se desdobla a bióxido de carbono y agua, produciéndose grandes cantidades de ATP.
Las reacciones finales de la respiración celular necesitan oxígeno porque éste actúa como aceptor final de electrones. En las células eucarióticas, la respiración celular se realiza en la mitocondria.La estructura de la mitocondria es parecida a la del cloroplasto; su membrana interna separa un compartimiento interno o matriz (que contiene enzimas solubles) del compartimiento intermembranoso que se encuentra entre las membranas externa e interna.
Metabolismo de la Glucosa
La glucólisis se inicia en el citosol y produce dos ácidos pirúvicos a partir de cada molécula de Glucosa, de tal manera que cada conjunto de reacciones de matriz ocurren dos veces durante el metabolismo de una sola molécula de Glucosa. En la matriz mitocondrial ocurre la formación de CoA y el Ciclo del Ácido Cítrico o ciclo de Krebs, llamado así en honor de su descubridor Hans Krebs.
Primera etapa: Formación de acetil CoA
El ácido pirúvico se divide en CO2 y un grupo acetil. El grupo acetil se une a la coenzima–A para formar acetil CoA. Simultáneamente el NAD+ recibe dos electrones y un ion hidrógeno para formar el NADH. El acetil CoA entra a la segunda etapa de las reacciones en la matriz.
Segunda etapa: Ciclo del Ácido Cítrico o Ciclo de Krebs.
El acetil CoA cede su grupo acetil al ácido oxalacético para formar ácido cítrico.
El ácido cítrico se reordena para formar ácido isocítrico.
El ácido isocítrico cede un carbono para el CO2 formando ácido alfa cetoglutárico; se forma NADH a partir de NAD+.
El ácido alfa cetoglutárico pierde un carbono hacia CO2, formando ácido succínico, se forma NADH a partir de NAD+ y energía adicional que está almacenada en forma de ATP. En este punto, se han producido dos moléculas de CO2. (Estas dos moléculas de CO2, junto con la que fue liberada durante la formación de acetil CoA se toman en cuenta para los tres carbonos del ácido pirúvico original.)
El ácido succínico se convierte en ácido fumárico, y el transportador de electrones FAD es cargado para formar FADH2.
El ácido fumárico se convierte en ácido maléico.
El ácido maléico se convierte en ácido oxalacético y se forma NADH a partir de NAD+.
El ciclo del ácido cítrico produce tres moléculas de CO2 y NADH, una de FADH2 y una de ATP por cada acetil CoA.
El NADH y el FADH donarán sus electrones al sistema de transporte de electrones de la membrana interna, donde la energía de los electrones se utilizará para sintetizar ATP.
Los electrones de los transportadores de electrones NADH y FADH2 entran al sistema de transporte de electrones de la membrana mitocondrial interna. Aquí su energía se utiliza para elevar el gradiente de iones hidrógeno. El movimiento de iones hidrógeno hacia su gradiente a través de las enzimas que sintetizan ATP produce la síntesis de 32 a 34 moléculas de ATP. Al final del sistema de transporte de electrones, se combinan dos electrones con un átomo de oxígeno y dos iones hidrógeno para formar agua.

martes, 5 de octubre de 2010

Nicotinamida adenina dinucleótido

De Wikipedia, la enciclopedia libre
Saltar a navegación, búsqueda
La dinucleótido de nicotinamida adenina (abreviada NAD+ en su forma oxidada y NADH en su forma reducida) es una coenzima que contiene la vitamina B3 y cuya función principal es el intercambio de electrones e hidrogeniones en la producción de energía de todas las células.
El NAD+ interviene en múltiples reacciones metabólicas de óxido-reducción. Cuando una enzima oxida un sustrato por deshidrogenación, los átomos de hidrógeno arrancados a dicho sustrato son cedidos por la enzima al NAD+; éste actúa como agente oxidante al aceptar dos electrones (y un protón), quedando libre en el medio otro protón:
A-H2 + NAD+ → A + NADH+H+
Por tanto, el NADH es la forma reducida del NAD+, ya que posee dos electrones (y un protón) más. El NADH actúa como transportador de 2e- y 1H+, para acabar cediéndolos. En el catabolismo aerobio, el NADH cede sus electrones al complejo NADH-deshidrogenasa (el primer elemento de la cadena respiratoria) situado en la membrana interna de la mitocondria; en el catabolismo anaerobio, como en la fermentación láctica, el NADH cede sus electrones al ácido pirúvico que se reduce a ácido láctico.
El NADP+ es la nicotinamida adenín dinucleótido fosfato, siendo la NADPH su forma reducida; su mecanismo de acción es similar al descrito para el NAD+. La principal función del NADP+ es la oxidación de la glucosa-6-fosfato a 6-fosfato-gluconato en la Via de las pentosas, via alternativa de la oxidación de la Glucosa, cuyo objetivo principal es la producción de Ribosas y NADPH para su utilización durante la Sintesis de Acidos Grasos.
Las formas reducidas del NAD+ se obtienen de la glucólisis y ciclo de Krebs principalmente.

Modelo Pelota-Palo of NAD+

Modelo Pelota-Palo of NADH

Modelo "Llenado de Espacio" of NADH