La potencia amplificadora de un microscopio óptico está limitada por la longitud de onda de la luz visible. El microscopio electrónico utiliza electrones para iluminar un objeto. Dado que los electrones tienen una longitud de onda mucho menor que la de la luz pueden mostrar estructuras mucho más pequeñas. La longitud de onda más corta de la luz visible es de alrededor de 4.000 ángstroms (1 ángstrom es 0,0000000001 metros). La longitud de onda de los electrones que se utilizan en los microscopios electrónicos es de alrededor de 0,5 ángstroms.
Todos los microscopios electrónicos cuentan con varios elementos básicos. Disponen de un cañón de electrones que emite los electrones que chocan contra el espécimen, creando una imagen aumentada. Se utilizan lentes magnéticas para crear campos que dirigen y enfocan el haz de electrones. El sistema de vacío es una parte relevante del microscopio electrónico. Los electrones pueden ser desviados por las moléculas del aire, de forma que tiene que hacerse un vacío casi total en el interior de un microscopio de estas características. Por último, todos los microscopios electrónicos cuentan con un sistema que registra o muestra la imagen que producen los electrones.
Tipos de Microscopios Electrónicos:
Hay dos tipos básicos de microscopios electrónicos:
- El microscopio electrónico de transmisión (TEM): Dirige el haz de electrones hacia el objeto que se desea aumentar. Una parte de los electrones rebotan o son absorbidos por el objeto y otros lo atraviesan formando una imagen aumentada del espécimen. Para utilizar un TEM debe cortarse la muestra en capas finas, no mayores de un par de miles de ángstroms. Se coloca una placa fotográfica o una pantalla fluorescente detrás del objeto para registrar la imagen aumentada. Los microscopios electrónicos de transmisión pueden aumentar un objeto hasta un millón de veces.
- El microscopio electrónico de barrido (SEM): Crea una imagen ampliada de la superficie de un objeto. No es necesario cortar el objeto en capas para observarlo, sino que puede colocarse en el microscopio con muy pocos preparativos. El SEM explora la superficie de la imagen punto por punto. Su funcionamiento se basa en recorrer la muestra con un haz muy concentrado de electrones, de forma parecida al barrido de un haz de electrones por la pantalla de una televisión. Los electrones del haz pueden dispersarse de la muestra o provocar la aparición de electrones secundarios. Los electrones perdidos y los secundarios son recogidos y contados por un dispositivo electrónico situado a los lados del espécimen. Cada punto leído de la muestra corresponde a un píxel en un monitor de televisión. Cuanto mayor sea el número de electrones contados por el dispositivo, mayor será el brillo del píxel en la pantalla. A medida que el haz de electrones barre la muestra, se presenta toda la imagen de la misma en el monitor. Los microscopios electrónicos de barrido pueden ampliar los objetos 100.000 veces o más. Este tipo de microscopio es muy útil porque, al contrario que los TEM o los microscopios ópticos, produce imágenes tridimensionales realistas de la superficie del objeto.
- Microscopio electrónico de barrido y transmisión (STEM): Combina los elementos de un SEM y un TEM, y puede mostrar los átomos individuales de un objeto. El microanalizador de sonda de electrones, un microscopio electrónico que cuenta con un analizador de espectro de rayos X, puede analizar los rayos X de alta energía que produce el objeto al ser bombardeado con electrones. Dado que la identidad de los diferentes átomos y moléculas de un material se puede conocer utilizando sus emisiones de rayos X, los analizadores de sonda de electrones no sólo proporcionan una imagen ampliada de la muestra, como hace un microscopio electrónico, sino que suministra también información sobre la composición química del material.
Todos los microscopios electrónicos cuentan con varios elementos básicos. Disponen de un cañón de electrones que emite los electrones que chocan contra el espécimen, creando una imagen aumentada. Se utilizan lentes magnéticas para crear campos que dirigen y enfocan el haz de electrones. El sistema de vacío es una parte relevante del microscopio electrónico. Los electrones pueden ser desviados por las moléculas del aire, de forma que tiene que hacerse un vacío casi total en el interior de un microscopio de estas características. Por último, todos los microscopios electrónicos cuentan con un sistema que registra o muestra la imagen que producen los electrones.
Tipos de Microscopios Electrónicos:
Hay dos tipos básicos de microscopios electrónicos:
- El microscopio electrónico de transmisión (TEM): Dirige el haz de electrones hacia el objeto que se desea aumentar. Una parte de los electrones rebotan o son absorbidos por el objeto y otros lo atraviesan formando una imagen aumentada del espécimen. Para utilizar un TEM debe cortarse la muestra en capas finas, no mayores de un par de miles de ángstroms. Se coloca una placa fotográfica o una pantalla fluorescente detrás del objeto para registrar la imagen aumentada. Los microscopios electrónicos de transmisión pueden aumentar un objeto hasta un millón de veces.
- El microscopio electrónico de barrido (SEM): Crea una imagen ampliada de la superficie de un objeto. No es necesario cortar el objeto en capas para observarlo, sino que puede colocarse en el microscopio con muy pocos preparativos. El SEM explora la superficie de la imagen punto por punto. Su funcionamiento se basa en recorrer la muestra con un haz muy concentrado de electrones, de forma parecida al barrido de un haz de electrones por la pantalla de una televisión. Los electrones del haz pueden dispersarse de la muestra o provocar la aparición de electrones secundarios. Los electrones perdidos y los secundarios son recogidos y contados por un dispositivo electrónico situado a los lados del espécimen. Cada punto leído de la muestra corresponde a un píxel en un monitor de televisión. Cuanto mayor sea el número de electrones contados por el dispositivo, mayor será el brillo del píxel en la pantalla. A medida que el haz de electrones barre la muestra, se presenta toda la imagen de la misma en el monitor. Los microscopios electrónicos de barrido pueden ampliar los objetos 100.000 veces o más. Este tipo de microscopio es muy útil porque, al contrario que los TEM o los microscopios ópticos, produce imágenes tridimensionales realistas de la superficie del objeto.
- Microscopio electrónico de barrido y transmisión (STEM): Combina los elementos de un SEM y un TEM, y puede mostrar los átomos individuales de un objeto. El microanalizador de sonda de electrones, un microscopio electrónico que cuenta con un analizador de espectro de rayos X, puede analizar los rayos X de alta energía que produce el objeto al ser bombardeado con electrones. Dado que la identidad de los diferentes átomos y moléculas de un material se puede conocer utilizando sus emisiones de rayos X, los analizadores de sonda de electrones no sólo proporcionan una imagen ampliada de la muestra, como hace un microscopio electrónico, sino que suministra también información sobre la composición química del material.